|
|
Examen 1a avaluació (B)Joan Puigcerver Ibáñez kzzeQd0yxkc3OS09+ybPUw==;CbNA2OJKnkQSBc0tlDMbJ5YNhD4QTirvpdkRNM4cpFJkDJ9LH+mgMRk3mJ8IMxZZUEsW16M1rvXQgKKZOFzWGQLUjsWipxcaQ/6a6MM15WA=
XVztBCrQQF7O88I8ygMubQ==;UXmEdDc11HE94pdkFOMURf3+DTHl59yYraI7fdkJ164jIQIQlNo5Hg9lC3886IWzqsh2VokfbuQKRLsP+HOTEG2R/vBR1Nap6HucwPY1607za3i9boQ9oF/MjYpgmwLzxSP+PSJXLyW5F+8bbZgWb0DETw8Roo65Y+XB+XOgcBryQeSrE+qbKzz01iPNUT7DZmJY89DUIo1yo8isFgIq8CJFIeJ97Bzjmxx3T3SWJYCyHyLWp94MTE+5Olfl/uccw4wNUDzjL2swmf3DPYSq0BMsW15N45LDkqt4njfgQKJ7lCXiCIuHbiaiTHZ3rq6LAR4b3VvAgEPdr8lxdOh7ViEADkojzVfM4ZTptX+Q3P7UYDdpKzr+yunzsBG+EmI6HveDQOGhMmzZWLoB41xjlPoFkkYGVZiWyLyK4BWh5r/+zQZu3wU9tY8UciXrenl1WYAUgrDQxqc8Dme0qCP52OmTOiyNaE9hkGzi8EWY92BLUwdVdt9MTJW3EgpuLjMKK1aKX8MODal0cfWlu1cTnkN3fDE5eJKq+2fHYSHaJl1qiNmHEhGTXCOByL5C9WPJVYFH5EhmWvoTvG0sgQe1N3RmRy6KRlak4rD5b0KAcySQIX23I7lVN/fcs3/Cpn+kR256FYcMrWZRWQsAG/UiVBX81zi6ZwVBkbIVKgM/L3+1M8ZIi5M9pHtIi5rpKL5IvxyaK73zDIXHTS0mEpb3tLB155LKLk8DWsfyqKIsMWPz85gtqrpmYwHXwal4FZ/jcbLbNOfmGbp6N/0zm1ihGuWtVUNrjd30wLozUoAK9/lii7hGEHb58yBR+9EBY/uYbzFtcOe7XLqmzZB/hk1cB9xq1qyOXTzW/7QKSdOQxIaqdbYhTYTaeKEX+Jz405YhB8sFI7r3eDrpaz5kJH8+YcJDkKmzYtEHRLgluvKzKmNaiwGuyd1i3b2BsEuH9RuHht5RfG0apgRx0eB8aXcZMBsXURv/8xsdAc9zPL73X5+ZLacZJ+4FW1ppJHtqRC72TUV5Qi5vQUs/w8ht3C3KvSv9kJhLZjuh+PVnZNQzo3xDTBDYzZLWxXSCX+cYV796hALvEYkzFyzHSyKDw/PTzIE+aVBs8op/iCqGpFKGOzP8B1V/WJtDDab0gx0Ffk88l0YmMfmVV63B3KfwfeIqXGk9oL4ryon9PpN4jK9pen7xubdl7eMUsmdQ54UgSo+gY0wj1uc1El8K14H6S6RQ/8sX9cqMCRIscgHuFsUnCTymDYwF5qkZSnsdHBfPgCbXm5ZLpISLwN9LS3ORs1Gfcj6UVSsaH2+aROXvYbBz+IRVEInHK+Zp6WmLnr1Po0sYqtx/js9QAm0XQ9wK5Fkq07yRmMMOzUWwnQZGjpt+BW0p9qZY437fxS50oqCI9GTK0jlI9aO2Mj+5NzeDTu7BVUOH5JZ17esnMNwR1iRaSVe92P7KjogeWXPVCfE4zA7lBq2lghrbenLaU49Bqv/hST9yYPgzTsROBDwznLVRJav9lRO5BJSryZ1gkydB+Jex97/uWzPH8rZRTz3NLiOFLRcojeIz1Gm6W9nKECX73l1pWe84FuH45neGyNQ7xnCzCrEwdTTss91wbgMweZvkGErDFezt6OISW37JXkL/9gYsNnmgSKcBeRDR6iyZGhfoFTKvETua9JsWtR/tAMljE8VkJRGEg+Ksz95/xM+LXOfWADwI/D46JfvZpY+h4tJ3WKSU3u9+iAci8PoFrclJCMxYAJTsxyDzsXww688CizWFyBKAwIoalFCw0BjEfCM4n/n1UwNCzYdyZq5mZkrPTkKojrk2MqwUM2HxR6+8XNw6eWn7Y4R3LXcErve3QxuTxS5klGAqEk7RV0PutcbLpvdgtd5mWa9qkfO5QPCTwALvYWlOgMzMm2coWz/Idj2fGIc5xKiL4IEfv2M310ebW+HuGUbHM5IASLUdUv6augML1BKb5yTl86g4o0bu6Lrcrx2pfhUnomE54H07eNKL35Tzljjwf83t1PQsIMZ56qq7fYXqKS20FhdfnL2MKzdQRKjTwfChwKLjhyXubbfnLoKCDIwJpaiSFM+zxO2AWLK60SSkYYlRlE5UdA06HQg8aOQo5Rr5T6xcuqkl2w0kCRoS+BTj9tPTvNrKn440dCqCehcS3qXLG+VoY3SBD2SzWxe/Pmc/7qPsCcyuUHWEZwMPhqcud/kN/2i7O9MIl6XPs38VE41Y2Z6Q3Jy4bZYL8reTdFjPQ2ry7pRcTCE+icUU4DVuaCEFdi7QN6UzvQiF+ZSKRjIrt58hC38GuRkd2y3RPfAHST2HqezCzRcEz1lqxAt61Y4NAajye3m53dT5heOVkvVkHwAkTfrIP/4jtpoSs/wguYEuH5I7KnxrLdjpxetR/836li6pZBNzQDIillR3dMLoEk3LAHMKO+GU2fKs9wuCY5xvrVQHcREEmD/WdMMl4ADpZbdogOS0+aRRruYN0K//nUNEc6P8Nf0ZYQKbkkIFECEG0Sz706qVpjNKXprQS//LhybIGdIPtIaTmonDeAfhN8+C3/fisz4AHaJgmGAYulVGpOhEthqIQsMT5phYMtdL+tQCSx8SkCgw9nuU/C54WiHt5PpsaPIrS+lZUccnchoqsUeSOYJTA0kecECkV4klgjft9IrDKEhk8eKEBN+/3imUYzPeHC7JVK5g7fbB+VQWHxOjLWoO8kGrpHrHKwUt+Z0WzcMlgXYK2eYPiApq/BD7rCmhl2/5VDXzMqePMO1CzrbsX+BnU0oUAbay3S6TvLs4lakCKNHzgkfK00ciZ6eoYMb7QM0n2Gtq80cUZx0gnSYH33MKTr6IVs0Bw6XiMwKxuJmETFY7SOjk3z7m3SNrVIjajDjeophKtVZLDOnccBxwWCnWSSCgqTNotJEvVKaiAlR0ZQs/d/1Ppyn5zKojx7Tu/kNFNp+HPpiuconm+BXwnECW1GHvB18LyIy17vB8x2vi6rSvAtcLN9cLSMQ92Rl0k4GX3LCJePQ1gaP2JtxdGcFgncG7xPEs5j1ZuNOk7IE+zgdPVZkBhgXN6uSwXu7QQnZv9mMeu2/s0rTx/fe6c3J6sbXg8vvVL0WHPQav0o44EtjRdXwvrhUDblKAAMQ8qWQ/CJHs2S+tMw9sdw+/7Jl4qdqQlkob08kh2VlxfOLQlv5AjwUzcwrK4RHE74dYTtWfItafpFI0QOiPDvXHFuy4e1hC1iSSCusKtON9zQM8s+HheDudZ4C4B19iey2iTX8hDcQ5aQE2qKoKEeozJ3a5r26Cy9m0/gsEXlC9eg8EaZbBwfOlw3PBMwzT84AH5SucN4c2ttWXWUj1+c2z0QOmzKZ0GY9QCAwG3Mj1qXCQKCiWJdxkODhdQz0Z9IX84Hatscwv6wMGlsk3/OXf7BmWV2/7aWatnJMbsi/MzqhThf9+fzncmZykYaXj7f53hCoCVvjlonVWAGTsJ2HHS1E3TN9XsVzDn58JrRuzgJ1dhC5bHgbxAG1Pz+268BDzDx1pLEJYA86o09fXVIC9/cap/xIF5/l7/PrMV2uKByx/f7o1LalfNu0BufMphy09YRSpYOobvxEMv5Lmj/JSciX7w7IHOpzUiwErOa+nJ0pdG/T8fwO7vStjb2yjhSJ2xVLnu9T1csUj84J7SRXPfxE0W+iHImS74Py5PdBH+WHPt4Z+aLdy12kMmqnM/K2fRj3xTGkuX4ag9pVn6iMrOTYM/KCDEVzGajiZoOl/ZKc4iF1wZVjHzeTeKIU0GNLArV5K1CV8y55JGc7CbXJhWN61RJug3gi0vZq9tXI/HYJwuT6Mnt6/xamLnnGyjR00dX8JURvXR3IAfas6RFBPiSc7lbwLYKSZZDDsUL3hi8chPcQX5jTj7LyYdzrV/hwMXE7Xn/bOlLpf1pMnUfWwtleoEAevkqvrVCsap30xyU89tXFl/R9VN5++8IouY5FDIrU7NECMP4Ryw/uwLBtsxP/T6JPpvG9ZMePFZ5DcHQPmVO6VcbN/1rBf1FS6H1WuAzvFImVVVsSef1rOBeTjgycS7VNBZyw7y2J/vZ+yTqg9LDrFQ2cz6gQiy6Zq7Y2y8dv8XlMH5dIwaCZgcsAtGC6RIUEBSHYuGcpxdpqeFH3ucTia1gbbF9LGxB6Xlv+pPzK8p3WV2jxkIUZki9GrBkXfNoINy54qkJ224ayTc+HxogbgcSpO/p2Jil4t5p2H9bK/dev+TZ3mbeY0lSYExKcLHv4s/MOpgf7MVWBdPJ6baAWVs8yJDpjRHHTc4zmdGj5zmYv6Fw7b5JXdLkbSdDLTj8N9wd/8nwMnXFKZfsgxawxt079VKOpAVzOO6WLIuSs6Sa4g/w6aSg+zenXIy1MP0Ve108/uT3VPsvc5GCI964X/KE77ROq61wDjTZC1dktMndMK4N9gZC0Khp8MLmM6dbZbO7XFjlRHOczG0pI+YaPOldoPAFmUFx/zo9mMrqrdZUQWSxZl2fHTG5H8e2MPZ2ne5tt/9QM8gCZUn8VRBXtW0PdUhEFqh4HjKQLZiVuHqvhn3h0kmA/h7RxbB4Rd74ZtNqbQyfl+LkOr5Cb1BOghDTQtAksnUHBk7eFo1DFHr5MC4LBdCNn2JRFh/MUDASB97oMmh/7nMKPPzufCL4HBKoLV8hVZotLgNkD2zzA3gpP5QtDOxi0JCMzEId8bJ+WIpIQUHPxxnPZZtan2Q5hD0ClbhQnx7yxqKqcsm5tchZ/CfbYCiCZjnNLollyFMsjF5fNqOGwigB6H4+9NeOmiLkyIFz4sXzuXneTY3L3us14FPgpF9MHvU2duIXVeEqxzE3wq8DCSdfmgvykWDMnoRBt1i4m1uk1jHwe1xMj+Oxbz8rnLWQKHjB24ANgD1KCUW1YVsLMIKW05lQ7titSiPJlpHyrtZfipgJdmgh9fXfkUztKVc6Aakj8J26rRYNb2Vo0MOGTop1+7C+RzxyP8xQevgbG+6fnAEZMS7UbIGGOnIEY+Kn/jqIaWPgSvVH+xa/gjxlG5pegzmVbescREYV5YDwwqrg/h+/Z6L9/ip6k2DG4sgQvTgCfzu46EEKLL/Nzyg+TIcbN+LaTyJYfj4zWG6wi3EGL0Sl/3KD7UeuCw68Vuk8TmoJ1N2cDCu353977C7QVn1Q3eqs/v5GhUHnM41phLB6Ju/p20AfU/Gl5gm1QXkiIjs6N8bY5o0dwTUrRaG5elX8I7GCat9OFtT0i1OOiSNQ2H6NxZmXDdMohRRfAp1HCcPTRDufaP3qwPUXLC1ch2EGDCcLzNJbVhvj270C4mffAz/V2euOcQ/h7avxHeUIwam3efySQaYP5dZKBptSM6+wD8NA/uzGQiVQ9Nv02AotVzR7BB20MWJfaVvaypUhNPkAXaSBqbqIIo2AaoigAjBN+SifBG+IWarSb1+C+4RP0w5ugAMK4P6kOcDkPUyP5QPJegPtSZ62bo1M9YGfNqUNSOyJyb1BJv8qx/8ZFJUsZQLt18/4mLV1/FusjkIKDwbgMzDa01L/g18+s7qRRtYI1M7iaYaNN+/xmdgtI+WFzu7SF9RE+MHwgewFU9Od2O/ioL7WGdu3JAKsRjtZxO6YcH3mff9pSHcV7Nk/h3AZ4z2JtzT1gt0Cb9Fy5dJmPobWIzZy9/t31eCATxq5rA6a+rGcLVwdRpa5gSUcEXAgJFcms4eu9h6ZDJjKhnM8Nev3ndt8p88m9UDwfdOHc9YfafduA1AFvv5qIMELELt7M51P2JYL/h2SsJn7aB1GfeP8yq8P/X2LoPc9Q3KewqH8l2QZhB4d3+lKNzwl15ool9en1sy/RH5LyUp7l/csYmBUCO+B6TqRf9XhJUAxieknkYBrkl//qHTKFaJ3z1KnJEMIDSbuOBjFe7zdc9bupGlXRFT0JBW1iZGix85XXA0Fm1Tquz2V9swL5u9262hzD7ZP5zjcvx60FzgfEhNBnoAnyQCWA6jxuwSW7f637ZmG2614Hq9OViaPdH58BTx7/bUOMZc7oEyMvy6tw+XkRNZ6FtVicUUhEBCMbCfDbKzuPR24fRRAaA4dp1/VLx9T2rWVsM9aCu3QzM4DOvWTjxzIAs3QlPI6h+0K7A0XhMjw55uz7+aotFma01PpAFITPhupBDa42s0k4vOenfqlvEYBMpiSWBNeq216qw/zr7x0/R+vyK5To5DIkjInCSI3cOiNotcZSCDvs4i77Cx9QulA39FyeMChvfcOHXpqLLBiirYte+q0dgoPVoXMt8b3dU0u3GFdxL+06LQVKlZVoPC2y1kmyyVFAEzlMO1ltvo4dOf4pEgnhlY3d0ToQnhBlPjZ/f3UB5Jel05dL5B/KhtjNKi3+pg9/in1MC1MlP9VV36XK+6nwAr9Xidak9MQAPn7jUMqujo02C4tAdv4okuH3gllN7vr1KAWFzYlDft5D2G5pbPdB00CeWK27fgIu5bk1c4DQLffXOrOPN5oQRQnWEuWdtnD7uTQdNGBqEez7YPhuFWa6f31Mm3eRPqWZdmLg90Cqiyg697x0NAaJJPXVTpY4xoNLvOQbplkZK6QsZENfBmTJc3uYiZTbuWpbZmLZFPvDcg9+FFvsqT69oINDOKMd3NJdCFRib0IGq4l+PVjvXfeXvtOkUxA8j+ntqq4LPY2gPu02vWx3UOxsfb1I76524Isezgvpz05IP2uxDu/tOLnebLU5CwB6gpj6SUCzmYGt5ERyMeSdg1q8xq0F+QVmAdHeEIZYxVwuNstrDWCSpe8bv1U64CTvcE6sBWUZaBqGGLNoMPrutmtkL4Zl10wyPUf47RSPc/Fqs6CiHByEQAdv/EgJFouXdql7+tE0sKLAdO8+pH70IEtEjPYPo0VO01h0Lf0IcKy3l8a9x/T1CCWtJS7gWOCSQv7pnnxRjIjpuU+UeX1+SdVJDP3A+Bt3HSJlORCjfYoaAGkiEEoQNRWVUgiX2Qe9igpTfe0NcrSvHbqUVY0ItLa3A5I1usJv7shfQWzg9KZdRoQ+3fF/RHskjOBm5swLO3HqXgVlME0716l5nd7BZaghY8lJKVe+T7HpTjyT4jIsCo9UKnkUbvZtrUn8Nq5+9zIeTBEiWy2SySkrhqwhfi+GomuzkahRulBPL0OBVbwuTVrPZzMhQLNaYJYTdryWRgs4H57JJt+Sh/JksdO8SBJX90t0zTnmWjN8XouY+5Gl9UDwB2oxd+xTPyzsZKrANkZ90DqimM0ftWRQM6y7KrjdyrFqvgIDfi1IhIm7vJfzw5DFoaFGvn1BIDzO18BXrGUaewQLmOktMlhTJQLFZbRX9mUXLiWJIlTAWZHfhYSgyHyKfz3YzIHggYeO/S43Zd1DH0yqml+dVD68PpOS7JUEIqc/1MitIlfbCk3g4qWNrnWicaF9YSk9XdLHhB9qQv/JS5cwEq3DUREMwxccEXvqRB/Gh6dpQLwLkCOBPGuUq1zVNKyl5oNAAL/Q5lIe61d3hN3oqV0JPCwjA/vYP/qzgkgZiVK26Yshzio5EIcz8a4vwZQ5N8ziaZEAR+NDrcZsnUV2OnSJL/8Bs47g3r0wh0FaGaC55oKsW1cbWFCuab0VHhA0vjYqXd9sXsR3/quLVZQKJdbf5GC7iVsRbi5FRlE423mAeJyjcLHBsJz1ozJ3BfJbnDRjdcf9O8sUgori44mc2qPH4PYJRxbVAXFD+/EiBOamZiFI3O6mVgjZdtKI7dNI7iW8wmscfE3Ht+wc23gMez3cTWDIhFKkpVDIC39+/0SCXxY74lC1hKQ/UvHetVRzUp0tS54nKTuoFjrvA9BkaJhzvMjZm5uGUYa/KhLciRCVVbV8m4uzFVyYSir1Moy4CPtyrxd7trizhhZkNp0hWpzveSH/QQQlKb3xZEl4xwKmQ7uEyWMPGXLHhcU1VhmHcnzFAqG2Xmb4wszTfKg9jG8/mDOhGlSwcY9QV/W4hUWk/LgB1xqIT3VggbVeShd8EwlRlZPcira8tRctytiEOYhXa5zE7CeEt2XGRVII101b7UJqfG1n8MOVoC+S3QilYJMurmvaTap8VRnaN64vaT+i2/j4R2A+T/ZN9lUnp3T8xK+I6bKfQZF8t5Uvp9XR7dpT5bVkSc9r9OSGtoM47fH8CG4pX7ulQpKQXnXz3M3na3ARSCIIS1MCJPtzuwAhszKyxL1IUAkXDC9P0K4loR1Tt46c+8Scic0t7WWENwJTvut1Sy+Oqz8bRW1jiizWncTWnBKpkVrGXm4LnIy3j056Pxo5/1xkG9yBiWWj47ohmT24PL2HAiX/ktgDOLMyGapu2/gdIFoAM4YKd4cevnHYuxVEWXd5JQEBx8wK3OSnH21MQdLJcUAv7+wda6k4QSXyuQcOyYEjQvfh/3IerK/+XIQCSdoXMO0/oYfRvJll9Fh9yByn2MnbeA7HRz/X7tYLLqm4pHTBmIAtYYiFlPIv+2B0iPcN+GdDm2tTaUfTVKcVwrLT3t2WPXrQFpnsjQ7d2H6ZbKUOYFb/dcADMqloBWkrF94pO+JeskZ36B0JxO4UiDgAnUex4USYYNLSNcHu6gXxJTbYe8rjet1ZoLy7PnIyVX4260LxQ7OY55DEACKV5bp6fzrpzfiID1ww1Wmb9/Qwi/9hFRMc7E4bVKHSKj7jdHGV3lkjfOSWqwUVg9nMc2kypw5U675WjfpfbTO/Jd2PzKVKHlrlqjhckQc86zGvrIEGoCuBGsKvJVz46BazkQBis6k/FojIS55jowa/yB5h9zwE/gf98QuqxF/WBBTcOE7NeCrQaAlvLDnoazI3vsqujADalyuREOrsBwUxGRVpV9oWNyWjP559MD3XzjizxrdlogohWVCcYsOe2LE92sti6HIBnCzgDkiyGUcFwPMzrPHpgRcrHgEafh/a+itPC6blJqQXsrIELrFQ577CfQl0jDih092B0GjzAKHBTU6dEkz9to+1aoxuV9TmjB9iV+6XmL6btItRdHnUbrvlIWq069DocNCYA099z/J11TvOBl/1BZFfUKFcwaRKKU92zwm1mSOfxX5VEdvhor01Ns/+mPJ5PKBaO1kO6oaMhT739Ncn1gCZ414GQ4FZYA8dgIcuQwP2OMc9zc3doi5zQ7/UwVOe3IRX3rfBSZbzDyvnxTDCOP5P47mcV3Pfi3wLuBIZmlmIISGwB033eH5pvt8Kxiqrgk8xlVQCMjf4A8mFCPE3hVLYp6axI9VdlmPYCEpCy+j0IXaGL+Z5ofSDpHccB51bV+5lSmVR8VudpsqwmceOkdhKJOCWFMjkW4XsV9OBdn987rPqYDaeaxqtjrv7hh6nLLnPBq/OV4SGk6DVmRoYCpLoqPRhAd45IWY5NhZXpGMALi1kWPPjia9xztM7CAp+bEDLe5zrBoEHy251O1RCxg6ORlSq28c4AxROk93omQhKeG1eIrnHYbFZJZRr7CWnycyvFPQ/64jiirA2qon6mG8BEqopgNCE1cdVBNBcxXUFWWBq54CJUgC9Q5eEIBcmndKE+3NSgjcqz/1hkA949Ygh5gdwJdgIumiTyvQ/A0+OhTIhZlyr4scCwAynVEh0KG5DbJbxaacwvSYJCY9Ud9MCXkTmYJupFpSkWdZ41EQLu1m5B1k0kZGdHJfmcLOB+CgKwjFgD5VxpRbqaMviJ4kc3l/JaaW7aCS0ZaaHwI/qnTxxMciwa/FEMDkiI3oPsXMaQ0lwd+d8n/CG00dNK75D/n8JO9t7J0ExATj0B4RVtQKRoWJVWM7gnDgo/QUx43R0frjAUvjQjTlMJsp91a39z+ClW6BsxTxhGgn1E4M5EkWH5t4j3fC2urNYjKGqfsDWJA7Sm2GgoKUnPVLOzkAZIESMhAUyZgMNHwnFwweC5b1NsixYbwVR7RxM6A/SzSDulcvfMykzf/yJUQ6XD7Tn1qBhgyap3WcoP5ZimJXfIa6cuhvrZYYMIshbo5M0cekEgc7/sqSzQeGVLgkXuWdN1T1OTXprOa4rkCl8OzhgQiCuXx5WcuBgU7r7I9Frszp/FvRQCh940kJN4b5/W9KyXyadKofVV8XC4yeC0dlf0cZevFaDdxMuT1UROFXehLvFA4c7njk8ovnpB9s9X3T3rS8NIlBv/RVZ3Zr7ADfTYlMfBSQm/wEQ8+ByeNO+6jHt6icfsu85CO/I/pRha1xIiUUb2ta+Qh3+r9mW1Q8lgBdGswoCM2Wx1odbZ9dXu+JvaVLOhX0c3DwGHXiNNFEfQ6ZZ/C9d8Q1Ss0aWZCMlFQnkeNtZprZfp5XUTxXQpQIuQ8qiBjZMAWsnIDAXJEw8CFO3htQ1bX6ABOCTb6HzsAaTta79mrbQuu83DS9tAg/6zXh9UbKWBaF8gq52LSeL1JZ87PYpSIwlO6SfZ9HV3ifuCcQOC9rkRCPUoJKPK0T+6WvY+4YGyKsBGATKnGoWTfsJUhAD9s1zFoLK7MbGvtt0rnHK7TK6k/Zw3EcI7t82DQu79xeHxsm9hORKxIehKlwy+pw9wYof7A5zlHfsnqOm2UQdxn/yrX6aq7z4pSOb0AuJxQW9IJAktBjuLQxSeEbqIsl9uPtAjyQ082juOI9Wp+W+OCehFJ5Jsg+iMHCEhPTdNe8cxy9H+YynxsCR08/dRD/2WauCEa5u0uOsZzt15a+lMjIsJNOaO9POBIzVM5kwaQDrNSLKdynGEmZtLkeOemwPlQR02PMvR/Hdw7H2AKcUycv+EJ1uaDJw/Y1s0ZsprYF5ryIxPE7jIn0NX5Z8Aw1vfLjQ1Tu6KImg4SUsWw6s60hY1U+37s4vOw7u/eT3Wyz71+IEe94yauxwA9FQaWtwq+pkteQawEN8TRIkCdypLquOoUO5Tsvvm9O9xsRX/atPqZ2Dic+7I5vhGyNj/C73QJ/TqgOMfslt33sQMhdS2xVPkVPGWsqKA3xI/LUbAighqrNdAU8my6P9uKM/C1WpSkWUrK8rktkYXZW+DptnEBb/usYbJP71xgMHrIFXh8n2ZPLVjUAZOtL7CybR0u43m2fDOXtltGC1GT8cyKPlwzGYL53xerCaPCAgIG7GdWW2MNzbmI15A4bZhplJ4+raoKAnoQc22yDjMYlosSL0TprVI/8frjS26lPD41793XWaR6jVVnbkDSuh95Ea1imiUVARsM71u1VCazt/sophmow6JqZfvd/BtEY6lrtgj4IdSL9rrUcjMwgnOlztj/9Jgj+gtwzyOxRzbxCNXxBFTE0yxqXBLVn4DD8jaWDtZAolQEbO2qCY+1tdUHsVU6sQITRahoghnD7kJJJpe/x5QmrIFwMXhv9qaRCQ+bdPZze43ki5/LQyKf/spcDeZixzeoxdVOnq3AJKRG/vZ+Caji8VFWOj29Dgv2LVQJiwkHElo5L2glKJKun9CJu5jUnRrGB1DKwlINVwxH+pd85xvEfGkCtGoVhXQgPbH9ZeIhOCLy1j8uhaaZEmhI8Q3HVOUnnNtGat9+cKRRTFYr4poLYPK4ofXOxHG4SIewkRwndKCd11BCCOQerC/QZB94bP8GF+zZj2TB6UN5yvGYJ/XF9wPbS48qrZF1y6Vfyl/tBUE7DMjvkhnQ7AEfc/czk0vdusEOUj8COpRb2xNbveLKK2S+XBMwuVyFRo2pt2o+WJikv0viYeXcVM9uxg3lnOBHO46WdjE3J/HRQnTGM6/rXmZL185F+fNzhNqG4pHyP328FuMmLNafSXfZcMtxgGqpW2d4XhDBjOd4X4Quo4xsGMxeb3Ud7f/NX7R+2Kb+xr7MA+/KSh4Lw8fjrSaGwtqScNRXHeoHJGQhpcHREfZHu9oNyh92IrAhFaMnkHCfLMCRF9UwaogRU2TFll+NWwPvqfDs71mlcl3wDCa1B903BiET/A7v31ZVpDPpIVTOd+42+hQoVUKDmlQaJ/2q4yr3Xu/mRL7e2YkobxoNp4HcOflW59GKsfutSTYR5ET7ShqEi5FqLl7Y8cyU2eWTMNLp37HPbl9Vkdgt9GZhZnhX63WtSgjsxO5qXX5QpIS4UFfhAwCKgXJTNqUAoxhme9KyPmDQfTsr1FJr3M4qde8m+C4PScwM2jj0zxfVy2q+VVlCDuy1f/sazygVnXSe/KfMYcdyekcmR3eIDyYqZVQQv2/a8TzRjz38vCYLmK3hfDVCNiseV+S0Luetai+Lhs8nvTUxoynzK+O4Z9BNEN9mea8WvNF8tuC+zG5c7O9Y0wGyw5xlBueGj8ReJhvcW/PoGBj0TFRW9AUZ7PnI0m9+fcP0c4cfPLZnUhCahSsKtWNPRMHuZeOZX9LwbQoK4IErAa8URwB327Lt63SBU9/5A==
📌 Aquest document pot quedar desactualitzat després d’imprimir-lo. Pots consultar la versió més recent
a la pàgina web.
🌿 Abans d’imprimir aquest document, considera si és realment necessari. Redueix el consum de paper i ajuda a protegir el nostre entorn.
|
|
|
|
|
Examen 1a avaluació (B)Joan Puigcerver Ibáñez 📌 Aquest document pot quedar desactualitzat després d’imprimir-lo. Pots consultar la versió més recent
a la pàgina web.
🌿 Abans d’imprimir aquest document, considera si és realment necessari. Redueix el consum de paper i ajuda a protegir el nostre entorn.
|