|
|
Simulacre 2a avaluacióJoan Puigcerver Ibáñez Wh5VKiB0+6TrpfyGpsPuxQ==;jILYtMF0jbV4+6OKXw2xkRhDw+J76gPBGw7UqxMbpU3L3X0LKgel3sCZ9kT6ZslTVmrC67gO3ZHGwgx+Fh41AuNcJ2tGoj8JknvRF2MxRBY=
FmKZAYYQXb5uCkryBIsrsA==;nsxCrjZwMG5WoovJGJtJGrdFZ1a/3YYd7ZxdCEkqyZIpO06VHaero+dJ8F5gkPo4fqlS+FFRjDhHVzF2ErD2VOdfuP5FiP2aZadBfEUVCTrd61YIO6KR1i6PjC7wp29Nbxsh3B5SdV5HBlRmmGF3lSLfOarDmW/at9oyqiGzEFNWYD6ZooHhNIk1APegg2hG+37d8t4GESZcQf7rXTJL/LIKTvlj3IVvgV3xc/+EnzhKXO9lRiSy2pqMTMfcLCQTPsxwAJDE0ey+1/sDZ5kiydnNbsDxUk+XsNcEEvVrEVvFeQ77Efqope+CBxyDbBpGcOEnIGFazbnsgKi2EAevmmq148y8UWvTGIb4hRvWOsPNlrUImpG/p7xThYu19x/mTspVhxV3xvvNly6oxkcFtFIYvH4vHyLA2vY9SvNJyyo/vggYzliEdzOOO5qSD2F3dXPQOrkbUBnP9BAiiHf8tXQmdrVDVgbYcXOOMNVbKmDb36BL/gIBgTT2cpLbFW8ckMUpxQrkgwWwftPIugBoZNZ79d/51vdrODoFnB3UTKFfP59iHiRX0wTK2NJbEADFP//l28PYHBPj0oQHO4rsfbcF6kUDQ6Crws5OhA+MsvW/e5WpttpQyR+gkfI2ut+91jJvk70s5bbCYvG90bbRHGy+VZ8FbHaVnjxpoIFjqI5A7E+flvVRTFFcBYpoiUJW+M8VaaEQrMWKm0FTsbpbFNLYfMnjnqG+EJaCWvozH2TNDIoQ8fTHqq/BpP736RlXSs5Kr5b4FGO62WSxaS61gH+ZeaPy7asmaPMXt62gFhyOnYPiJUL6ikGdYnjpTjIZcqZPlj6rLjbI8LloM1bFFH2SDd3LVmFuytATPmQQZInC0SX183rTn+pPH8xTeFIh3cI96pm/3YvNxfJc/G6lAHvq2nfsNgAUXBIy8YKs+GO4gXFXRqrk42yuy4tBCPJHl6M5KRbI12Os+5mBL9E9Lbyr9YUsqCH8KgqDlj1jACk57DFGqOytzDkSlYp9poSqlVqAYeWkURlbKgJqgpW0ylpNkX2lXf6JnZsksbEt84MQ0Pwwcig/baszTD0UJxaNwkQlvDWbJVhyPzm9xiI7d5AhFzklp3nhSEfL5Zgn11r7QmhD8GvGBS3WXcajEMWH33sFxTmidlck8HHG7OPGuL/PUMPa5iZsUGlXLkaQP0Y8gmM/hVJAoFhkWtAwXcRQJiLYpkCXUrabvu8HcSJLuJH+JCIWYfRnhtoJdUfNrJaXtCXwQCjvJEqnwPnngi2NsWtESInqhtwdUBBvZn9x0dy/JtwhRegcF6dKaIHtG1tqpw7km/p9p1Y4B4y9B48kiSlgif6f23bdZDyP/0kLQ/sliIl3ZLl65mWR6k/UKLX8YJ5YgUtSfCf+ZS4ZuOc1WkRzgtbD8riDyIlnp5P5w5w9p0jnRDenNP7033OHBnqXLvbY8bk8JGuvhC55bQtQtStECnzP11F6bXBKQbkvFmyhASChWWdYhx34Vzm0E45szFVyob58t5e98u0tV7u1lDQbGVVUON2d3U5IubNVyQ9w+Wu2yz6rpDi0YcNAouOlhkxqx66CpLYlJ/yG/TQNNQo7cK5a/afYwiUNTD+iFx999oesayrUcCc4Z2cR3DvRoX4crgt9iXOPRin0UN3AEdBIgRpY+1fl2oP5iodL3UzKC1Xb0jJuaFIVrF0mQ9CXRCQme64xKO+Ub936DApHdPlw13SFkkvn+aYNN5Aa3wmDR0IeXmb+HyM59i67/fWG7lPyqw7sTYwafMkj0qlobvHHe3d2rx8KA0dNaVz/zuDzMOMB5aeFhnd4N73e8/Z7GjDPXuF55TS2BGdJpHHqnaKStshQiTCKdO1VREb3oGOOrajt8Z+BzIlceI3QwlpDHMDjcyLsNsWEOLM7y4ylxvYwsybtlngfgmBHooVu4WDnyo0EwW31aj7aASHrE5dBvfzbv+mfa2vf+54Y8QiVMzfyPFgnRyQ8P8Jb/iAyYI1v62Yp4wjcnwJVtoyo8rgW/wxHdtceMGOv2cRhSYuIBeF3OGyeonGpRufA3DIx9JWR39ozW5fmhUVxtiuc3n8dsaqn8r4TsZbZcqX09tDgJeKX6YkVp+eIwvD6RPo8jEHdu2UoqcgPjoVyAHzVDyIXzeZJnI1WY+UTvD9SCTIl7B0WXawBsy1A57CcMMejYOiwY9G3f2dXM5xcyVdXW8UKJffRk1B14wCzngBpTGKLE3Nw9RIueLw9LcCAEb5OxAFD49y73CvzVE313uhpzMmquifFC9P/WKDzJmDnkfTHhENS7k2zRrVjRZB00u7HGEVmp7NMqd73A19tR/c1gEURBwVNoy38t1/r9Q6kMtQ25R4zvmCbQffCqeQPecuyiUyjw6evYGhvSxUdF0v4jmMNIOAgiJCP/UKIQqnLcI7J7Zuzel4+uVTL6smJHwx6p5yQOrJzmcFsvdoNWSwLESAAqx7tyCQRkr6BkaZFuPQhCQlHELR4i09CIzewallH5VSmpuqWh7YQWA9pVVNhm2ywVSW0ZB1/fFlJvFWTn+8jti8zCRq8sJPZ3j0LGXPPOrjFatVom3pI0Vg2N850EqbviFvg6NFbZfLy4RLz8LESGbV12Hjgv4yitre8Tu33DUUu2IMQYdD16K/RZWkr/70pNRKbA/dNu+UGmsVTDsN/Y16KgFNqUFbcFWfWLy2GgBg1hsSUIr8Nr5bFZvtk7WDgWI3JWLrp7fyV1C7dGt7OeLHq+QTFyyMKHI4A6/MMyGetDUbsGqsBAQNovuebQiKQ6I8qa32zZqS8LNXerI1N/lgkfNRZYCzYmvmqfR9s9ZtcwyJN6b01Za2ZxxnWXkVs106WeUr2Mvklly+DEtfa920VPcId3BxAOjLlCZ5VBdzoRSvSmy9D2lvedWet6v2aCtW6A6XQaFMFQHeQX1gJT7y9d/MahuMlFMPLqLb7fLelmde36TM7xAotYmVnCdm1F1Looj34aFx+jL34jHsJjAWPy3QOqixLboaSNeRK+2KHu2214ZiAw+oIXhLpECbXmt4rXkBF5Ko3rRi02LDeBgbgoW3BCHVKNnrztVysLKaI9zBnh0XbqtgHuy/L4MUpICWUIbJIksiqn21u2jrJ6kQ01TDZ/3W+9w1iHoxtEriSCA89bgSPP7zaXH63Cg7PulgxIWybm2+1x5n0CaWNYGKw89I+ungKFlqL5WaNlCdMSiZ2wIaqn+uQqkYOboF3ogqckNEE0cE4EkLyytQ27B9QGen3RxaFw7oXo/5j/mC4h11uSK6zpGTIIOLbIiZfaYj7AxeMSrprxHLQ/YmeTHFH9CTzyMq16dgWYvWrq7KXQbzX/k431yLRBK3VAQP/uGRnlaWspcZKwu0M+GTzIS7pexEIIyCkTOl6WJT3TzNZp+SaAGzVCs9+/VUHD6b4r31xSMc1guGHwFeZ5CX0A7YiYifoD90NbGj3cgQCwXpSqrexYtBFrPJ0uGH5kv1sIx42arpFco4Uj9+0HRP303CZUhaieP/reysK+ALKSjfI+GNxvno5N6ZdvhHbGU6iDWIaMRlmSom0JHNi8r840alR1RH+Lx51e8oLB4Q1Q2gBnquSGxsxZz7wKtNDS9ZmE9c+OaVJDz5h/7Cnw1mTSy364mE+vM/YjP+is08vHULY6J4bO9vmgsoCasxbsWW1qoXYgOPJhdCBR1U2NdcWJwnhoyRA39buz2pio6VSjiklbpv0lHAR2G07VmnkZh9HhnvJ6vhuvBSv/uxJt8IQ2mPOLHkyd/wb/eXBg0rx6qMg7pun93kDFAFMojzuyS2Y9VJnRV3AikqZVEfdFRs3xNOFji/Wbmwp4DGU34DgUlQ36CaPibod9Xtaqov9sJjiXQK1mSYBwuLCN1WAokW07V8IA3rI6DWcQ6icUB8dd8nHkGhTF7Ewe6d9amVU/N22JtuvRYZRdMlhcmPdAxS+2Q/jcz4gBAjE+Oxg0INPGQaHK0wWtVoIkq7zG5+O44pH+0Jw/bprlF+sPx3tNrLFyXqtPFYOGrvazqVsioBligNszyFwP7DHZ4H/IDYeP6vtLB9zmSFFK/zAhER5SHX+KT+VAH6A4tiRFEGLAzn5A1dto8CxFFmE42D56aD8NB3U64R8r+TibgUb0Dxo9uYQ05wyRd6w56BGUxvco1kBN4J7/J6J3nSth7xNyiQ/wqmCGVezDX9eFIjivPnWXf2WySPuoi51RXDiQbw2h3oHVAun9xtW3N2e168rj+uFrKHbKnoCRNVd9fHQFIkLZeYqOXmXvc2eCQQpef4RsvqO5V1u87XkE+CSDCB0mRhgwOAPr9ieteAb5U7FTFKO1pq2eOzvOb0aLtIc2m8IJMFaF1HR9AJqpmnEBTawxbcA43h9X5UnRkQFVr2mhFomrZmFUWQyfvC16ea8udVmUXouXRi01aHKtgzRRGsyBApwdw0Cay2q0fCQp0oFZ+ImbyIwGlCEzG2Q3cRMG7TSRqK0uoqpBtxlmbEu/LGNd10NeP4dMFQ337tIPL7f0f2+s+Gc4Cq+/fxpcdOb6jlmQSf51Ve0K4A9isfGA9khYnLBpmgtEU6PZ79mxMkClqSSh5jndfEpnWNnARZk8B8FDv7dRb+yVKnvCr9cMfUHxVmhNBoUzL4II4UhSfEW31NI93X34OUAggg52jc5TxRPUob9Ez0G8jtTGyY/HNPSPK/pWX3gAIhyBrlu4zSnAVSrG4ytVM1n7t7KSKQ7l2ahX6vKoyjzieUZIjxxQBs1aL/7cS9SVwn5oYeq8V5blfVJISvoVHPopn6Rygv6M7pO4FrUyLQ6i3E7zum4OxBpqZTvYcvyKpuI3yil9cyq2VTUm0e6kGLej3c9bzuY6aT0vPGiC1OhF7FA4kbtKwCkkonwIKJ3Aa3+KXH+r55h1W39oZtQFWFvOND4dD7+O/bfvY04i333//uzzKOj12GQD6jtfMDunI6i/at/0SRGQb0ocU6HF0+G0+4IYBdQPoNEWz9br2PO3e5/OIQgQ3sK1/FV/yefqqr3V5sY1eWQC9nP9ECoEOJjs7yPdqpd7poGl3rAs5HWj3gBsZ88VHHH6KZ+7zHLXPv0RUjLP1rCrRtFEpd/QEdEChVcnclckCk+Fdvjmz/Y6NIR2sByr6iuv2EsWIo+tJWBasE6pB0G4jl4awg8oZLSdM8O0P1ynjadieakFfOQ58Lzqu+FrWWPGwETT+NHXg37Vm5ZnRvHR+jGIV7aYDPGGAmhY4OIHlFyG6RLFY+JCLpDP0nWzLzhfKEq3XyB5QFwxvrzePFuf5L/ZGiSYIVWWg09LKffi9g2QRRh3OhEp9NgeLx0eR+wdx9Jy58b3QK33aH2HypWzgMgaPSH3AItBo7BXm942IOFp917qEQ5+YJGWabTnFDcjx4qcmGE1LbCIU2Z2QPFAMekiidz+g6CQ+SnWIYlsI88QfZtBkXJJzBW/ft/2dxqpaXWmqWwRrC+5bijvbOhh0OOlX5C8wOVqR78Ic3e5/ebjEP7IRGqoisupn9QYaMoiX6VE1FBo/Y+wWmKWOEtII/iFKX+RHoFzcMUrrGFiqfNMGqg196pfDdFWcAhgpfy3yGOh5n49jcVLuQedivrvn663aBwy2KPbURnAAiZz+bF0mJEgPstpCF5hGCOZFbPe10tcDFAff0ZGBmxesR9yfEzs+Fhqrumhg6Q8Hvm/CZSyW8HyY9dlqxiFy/WHoR6WkdAE6O0E42mfMIuQTBHFqSlb/RYA/GEAToRvkpVxiTnpp4CDqoZ7w8sfySrN4RZ7rACDvsMM6ekDjKKBwysgQQGc2A0+cYjlBz9zQlJxFX7mV7MVSDrLfQ3NOvUbZEjE8b9u+kgZ4j6rvLVjmFCZLnbHcu6bOJKAUzkkgzUlcm3shyyRe5FJmsziAVaXZvrXaaGDL3tamsGiuS0jvNL3GbsAfGk+RIJg4aTroAB0GmqJ3Cp842ubbFYjJVplk0SaYwTD9s706VPib6/mbZ/hsy3yGP8JbN9DDrBuNOT38lPjyEEqeYYBIdbkwBmb5vIat4NOTOURB0XqwB5htpHJPv7iTOKPilUCj9bxOP3vcp16MaHXuHQGVC/3h1nt3z0mz6EFp8DQ4fG1VKxLDJLuRr/PFc/3K3HsOQPx8Gkx9pRlOsZY7aRWEeH5/lMVsXVL4HuwjuGWc5cxTd4UVp4WtHCOkM46IszHtLwjn80wP1j6Pbfn+h8b6lmV8nFz8Bs3Hudbu/29L2nNlVVXbKAj1IuP9HfhLQn3F93Y23dNqBhtjwfmg80aMvKQ2Q3gads2UV3uLkTStfTrEibw1ALVxYRflHNIkJeUrMTsnB6hbtEOpZkCwRgbHVciDyWpwkfPq8TH4uDssXJkdyJtdnw0GEiDFkEcC+5G8KrN3TU5a3Gu+vpKRtFD6ZXSRXgQBJdI9/RFq0k5osqK++6paK6pBkP4+f6Naye9NCbr5DZlglcvN4qHMeW7KiuJO6wb2I4jtGo/Lo6KzFwwLSvLgu5FT//jZU7ad0m/0TZ8221X1845XwC8NgGw66AW1VedKsL2BPZAnQ6fAy8vveaHk+VSj1Zvs1G7wX/ir58WrS/FzZor+9x2Ff7vXPdSqGoZBJJil3Sdv36Uq3s2eSv+i/LBGZOkK164TIEDlazeeIEcb9n/ZajayYb8uaptEE11S5HasvMograaiC8fbdu19kAbjyw/CA0Vde3M3K+czzdgLamV42W/R6l43WNfcGyEioXRWHqv0mzkf1v+2kIpnvZGZ8TSObNOqt+/P8XDRHeSHSHjzqPcohsCoTQKNrKZEKtEi+tskFbD8E1MQFCL9PGgRavGJjSZtuwvZuViBNNU3q1BWxC/C987Vv/gsZIfYjOEPXpGeBz8rR2yVPy7A5GYguCpafP3uj1Im6e9PfyHckqbCvwgIoHiugPw9FZ4q8AgEV98QfsLvIaIgziPlrPEidewr5mDSQX4MInAzzfFXJZZgaOUAjQOg0mB2cIRE+ds41k3l9nKVh0ENVf4BlPuRSMTdbb62NoDFnCNdb/M/cCnXeULdn9hqElfXwj0EvCcxed+2AFbf7T+glwVq6mVv832PuKFK5ZhSgjr1wbzjcQXZBtf8SSHLrLGh5e4bwSFR/Tdv6gzfS+Ud6Z61PyZbQiGrlEGuTxJrwY464Xsb1daUhMQwiTeZg5FVtHeX4AxeVvTxaw0rJTSIxldZoELtaa1Bn3HQw1ALfCcm7k10GEr0/aGiEP0HsQ27QY9Z9//CX6in8aVW9WBWCFdQdV65ke/cA2ZSGHyNQfg9QyyXkGKfHuuCgv8L1/Px2EXNtBzSodG94hsgwVWowy8ej+7tMzc/N6GMdSg8CLSCsNcdC1SGYaxRfJ78AXbLSSe1Yon8o2YPZ6bsCAGPP0FvyTKgZMUyVwoBW3WGzm2hzoaMjOffs/bALat5474yC0IdEHAfTYtUNGyDdobXP5F0rBX1gi/uxsOz7h1+JqEjrRyzY3becF2ROs+7gBwJbK4Co8khzsnpKVf7OgIORPLvPhN+PAZow439FVfm0mwyzZP1tridm3oUHJhRTOtJLYJ/+yRmHkyZXR7CKSOQjnuRPWY3wAc9fex/jA5DQkheG0AiukSHppYEQpeIdOp0/shz0mqvtp87XZZ1HX2cOvSWWV/1eOWXRUFvJvR76NqcbsMWjh3o1hXQeSjPgMNgbiPEpg8Sv42bX6QVUUKhFWmRrqfng1nx/m7X9joEr4OrOoj+bthYVtcXXh3f0wG/uo/lbeB/0Cy+QA8zbmZm3D+SLGtZSCq/sGz3/c5EGgJeCJopGZOCjHXFl80oA3RK+Fz7qNI5c+RtU3OmZd6pvJOUklCdErE2Fln0OimLy/MiLMLHit4ndvPrdQCCVvhC0qNWN7lTVartLQm6O7ANCmXt5jidKDLvnI7Uv/wFEv1IrBuidZMzCVFXisT/sh685G4OsWur/59OoGB5akdVKOIQZegNW+U66MTINESaTxSg2HTM0lJFKc+IXlg/0niWB1cZlxhljfUxhCGNziuCllVdUEW+T046Ag3PjirvxAvNukzfBwSY24lcx/ZdyvBpiEzB7TdFCRnxCksHhBYVwbDZ72T05qjH5uyHo3az6Wq4vWI9PdC53LbyBkwH4tuaPO4SlgLZ1nHngttbCunhufoWh8BF+uaopohqZPGcw9NBrTT81lp/i9yJuxdAjZopBI7YYEAllY6AAvbcpE3Ma8pBi1iwn6BoB4/GaxXRcwF5XAkvFYKlECaKyavfQV6nWOCs38TQ/1Ov6JBED2Eczzo+rVIVlVcqztm6ZaRadzEm2yvIXI8DWpbgwlDDlh4YR75CD9bbfsj81qJAqLJJQufccWQO0f1caNNleBhJLu4gTjAJ1h6m5L8VcwrszwvhQK/Cw4gaXmJ8wEtaTHs7fkEpJJYqTYJatsJtDDssLqLu6COO+QLJT9nXR5p4ia8p01FwcKGcxIZJ+Qk3aKWcfdZE/HoHq31iolNEHVM3YU4yp7ivDpaWjdXcfVtRW7OLadPCkhurk0oPJpNFGogBML0WnGKHg2oBVbaevFZmQkYzz4vHSAHrPCeC5OPzysqYneMDCAMO2PjaL+ASJwt2vqhtyALNInu6b9PmIFf/zamXmUKrP3Qkz/KJ3dnvpkkgkETebiruJsrfM3g+ih+AyntWbK52h6rZs/vPzPIPwMvd2giBzckYMfP1HdKq8QWgMdM1RicE3Ct99w0GDeGrvVzC3JV1EyirnJpUWl4DAo0JY9Vbqnywdm9tw8GNimAeCrr792A5afFHF/HkwhvuHwAPemg6zw+cOJqLx8DMqfkBVpz5q9Q7rcNHVp+BLn/dijGelQHRjkIrEL6scZwkWvEib4RS9ms63zvwr3YX9vAM3z/mOGstnD4wvc/ZJprN7vjwkCbYufWQlIqc7tb7qkdD+BXhQygARkch6KEXP3uInq0RPkRwuTGr7XPdmnLkoCW01nCYg/ITn+qIeIcy604FjYJmjbQbiPdtfUxMpRZm23AheEu50m1wdLy+GdAA56G2RtwZrEfTU2Hmz5s8aj1ZVm7dCpELijFqC8bB7767Ywwucw78OtU6ZtS9OvITALFsBITM5KBhVsBm7/pm33CQxj6552GVdq8p7McTCPUVFn+ubFqH6OK//Ws4nWUNRfpBbzRwlupLAC4IxM2kwzT9HtsqXKN5vLJpCpeESd+prkOENXAjKOg2GyafAW+hGVHsW4TkuAH89FZif/2CPs3+0KsQiRcMDLCSFaZc9OlWfW0j3CanU1f7N+VoIF5S2ZumRFTtnpw5dAtjGN07wJR5A+Aua5uYFzQCpRBPDxEZKYfnNa2zoRLhJdAKmMn1HwaxTyCPByIPGemUTtFEcmLqv7A4Uh3nzhmMovrAgrFnbSfieP2zd23wS469fvAPe/o7HKu7tBXPjcIuhsVll8Ku9QdeHypipEjfFFhZpEFVxe5weJi8Q+sSJxY1uTIXiTX3I0H/ANJ3S3TDEtVEou2QdKdBgIQoLA3qIPgaf59l1QBmHljdGTJl/RGUM4vvHcppXX3zdaELO6VasAAM/ZyYaCCuNo3AosNsU1sfwv6xoB2jsHlRtUedTF4+GkCT/+E1H25PDKXnx+AX1EKckg1tWxqzUuaOVlcpEfhf46if57HRJ7+FP4yU9EJuioAs7hIBDj6v1+hlE5vWsj4MB1aplHDnNVFjBlihHcQd68RYRmI0UsgilhB1GiLhn8eGL77hEGbDgR7LAhmkG45agLitUa2i3txfn0vzYALXUt3TGCLGMuWUjvqVklPwRDe8nY3Nv2ZXbuQyZ8/wVGiMFMfe3WwMC8FibssTBs+cwQYQwdhNrR1WtZ6v1WnInqXqLVUa+wWpV1o9rD36JUnbf6Fu+6k9/mReuddWxm6N2W3Yz2h6bYY6T8ekOfGEXRXiHouNRnfDSsRo+3R6qvkqPEyzGsUzIymhO5lj5s27WNkWXlSokJRrU3MUDXykVRgZB4UGlBogrX1tXRzLHf2LPi8dsh6x+1MG/jehe7ZHHusApO2VIQlexYf1htb02eoHs8SMwgREKPsrtmpruv4Wq1bcCzgyicTJ17w92nUcg/vkhbg6lwTpOtJ8FaVZjr2UNTLSWFP2DiavX0xN2oRFjIp81uvhJpSK7VGjTa8TrBW/5iDn/psp86bb6rocdJxo4uUZJ9rndD6JDZxoncYEa9Wfpc1W/n2pURC3gY+3sZxFCkxP08GFzTEqVP7y8meux9w3BJxp7L4B3LQcKs4TfvAMG7uQiaVlvY45hnTN6WoQRyjr1SobMdFPLDTCIcHG9DOMf8kFFpkQc8EtiWCtkffV7CApR/87jwvDhJtTmPD8+VxNaLSAbdNEA07rp73EfZ1HtJf7e70S3oZ3GDdUACrnH+8SNSoJBNY/FSSV6n0IavbR/uYCN9OsgYsLGbOOw4urTUf7/X8Oj+9VBvL3+X+kAvrVS3UA24Cx4IzQFtqY4lK3aUjJyCdyTnPTLGR6l133yJr6Jn3nmA32Jf0Lqfn4DqL+RBG6HW8u4jIwFDMLKND3U/dlluUPlhi9W+JwPTKqm9m3hCxWLFNBp+kw9cBW0YDdLTbhJjPt6mWA5dBN+FtOtS7+BEuxpKFT24m+BQ76wn5cJLxv06YlpXlFQc6D1vk6cyszTHqjBDeZEXtNhoHU4VGVC3obKj9cnLS1MQ0YFovvS9LfFwcSdBJEW9drIse5nhCcIyX1U/Ld1wzWO+9qyX7cCFeYMUacL4USlcf0w53oagyu2NVH+t/3qKHM2dV89wJlv+xIGYIQVZ8kSlyDDxlkSrO8fv+84ywgaKfnJV8pxco728IySemFwjDf3RNV2dVTG/
📌 Aquest document pot quedar desactualitzat després d’imprimir-lo. Pots consultar la versió més recent
a la pàgina web.
🌿 Abans d’imprimir aquest document, considera si és realment necessari. Redueix el consum de paper i ajuda a protegir el nostre entorn.
|
|
|
|
|
Simulacre 2a avaluacióJoan Puigcerver Ibáñez 📌 Aquest document pot quedar desactualitzat després d’imprimir-lo. Pots consultar la versió més recent
a la pàgina web.
🌿 Abans d’imprimir aquest document, considera si és realment necessari. Redueix el consum de paper i ajuda a protegir el nostre entorn.
|