|
|
Examen 1a avaluacióJoan Puigcerver Ibáñez SgFBFmLNEaUG9nyAABepow==;INcROTkRs7R/3XD5944pzD6Z8H3JMp4f6fhGM119gMLLx5LocqnskSDDxC7PW4PnJ7XyI7rfVkBB9ip2Qd23VZijW+KFgP3DDNYyBLGpdBY=
uHxsW7YQoqbRxNuB1LNj4A==;L5I2KS8tba29w3BE7COXo0G0cF+RN5eDOB7AaiYcHigysXAnVXJ3/NjwwGTofTqehim/HBWNXiQFOOP9TrYSSsTw5ujunys5cLWJiR2NYQpFO+yS08XYlnkMDqCzRUdb2kEO7nKXCXa2VQwoomzVCLjCnK2bIPPexuJQNeMeptQKk48DMj7AeNqxJQ9XDQWdCIW3x4vTjUaJ5AdcyPsKJ0xzrNx2joVKVCX2EjljH6GM1smlX6gIR2BrIC4/tGVNoySwHyCh1u4USsG/nFzZQd8HeQG6lh4xP2g1LeT92Yir1NsW4r7L3MPAoQET2XEJqn5JFMEQp25GiR0J6YkpgUMZnz0YlaYYzc6gR4GKTy9YS4pxVVzTSOQeFaC1k6PXkQ5t+w5XxurJ+lUlMdIRR//aW9QL01nisclFKJ8EMsT+B/GSn/luZq0fBJ9ODuQOmp5/aloynttVmmLe+Gp5izGsxvxJx94BvU7sz9+4td19Oc2Ad3XnC+w2wgR0hs4ndkEmKAJXZmpScdjqHgT708JdmrfF8by4EsTngRwJsJJumcvatobX6OHcAU0MvZXv7UxuM/h+HnWYbfICjWOdfmLCMVpOZ6b0BuXXVzl4NQa5wSeoXRnITVAA1PSUIxo7T5jmkfN3Jb9wCLEghE+sJEPErl9nOveOhdfmXviEU/1HbwairI7BPIL72UGjc1CnGnMyY+T8UfhAo8e3r7iGhOwMVwxmlqYWIYEKUJqnZnJQjh02MbUYTnBXOLasLLw86zt4aFNOutpjtSgeaCUx6CFL/qACsJzyRuAUHNQrmmW/ESMV7jwhX1gO0PSkxWIL6xJUzufwWQRrRDdlbuCYv7O5xbPggAmh/Rxck+UtXylaMbci4g1aSH13waNndUcjCwYm+A7zunjSa1gU19xyzIy5rZSVAbOtE3bc9fcxrDEAbOHD94bzu7we3JzRAG0SB/wcfyB4CvaY5Y5hqNgJzUQ2sVLL5DEK3SpebqxLnZglApLFcAgMrT4x6JyRMErogKRbTWS7fZcB545Tx54GlZ11LP1u0DpCmzaEjyAoJ7XSJaancoM9af2fCUFmsc4U4Rgl0NaDrB+0WDlg90PMaePs45+JHphjdJyj8ZSlNHrrJTg3D2km4wDpmeCM23hM1O5ArE2fro6aCdDtagCzhvEN7EtvXAtv/EfRu07KVh5p6WwxkmBn82SgiwbQLsI/YYlKrk4MT/wcKIqITExNXpzr3djZ8KdlzylLNxvq8zsbI5632/eRN7tuvUi1TVEoms/lithl9pEqYlmi5sSA27b+8LH06MtFqZ3bLAxzugi1pb1WDSvr1bLLDO4CuLAbBCYtqwfwevMOYLYHKZnYHcuO1wLJ4ZgU2QC6LVb61bz0C4LlO6bNnNOo2yBTsetdpdnQpMPb2MkrckAyrod7PDHL8/mZQg6zyc7Z0HQdoAPDM/YkTu1ETniNqOW84XgtHHZis73mzaFnC9d09DNTQmJBlBT39ASJ/GXnggqQSf/wZvTN+hpLWz7vkojYt+fNduCwDByD2VI7BLGronNSHxqovfC9EzsqR2eZEELy2MuGwcrP6jq8YusiR/JxobL4Y5pYzUJj9yQpTnnSQEWqRrg6rgUleS6sbwpot08YsIAQyfnXjiEnBPjqBc6/K7xwUkBxjc28t5nLEUhDtJILkX+cOnGDvQteRxUzHOtvbIoXRGUwoFx2fEy6CEctWJCt8iqm8CKY2Depx1FSk64K/jGcxa4U7SQ4kQSwdZElKqWfPSTdp/a7XVToNg4QAxbbaprhcdSQKQhftlzle14hEy3s/Tzmj5ewt6fLlK90luXm7AXXkTju4vywNDnu3CR4htIOwZETcJIs4Mjjrl5VNHIZdtDAeqoBdERKMVZjX5tBA8lXqBOaL7B2uujzvsAj9lUIXVvS3mSJCviqYuFZWg2aXa9MNHpaJGsi/bfpdSTB9bhY4nEwfyRbtdVSh7zVG9aUo4x95UEGfCXAkuqKtQ6PA9aloPa3boRgBPUMFmk+c/rBVef5Chg5VUioi9DvcnkZyHluuN7BNfmMNcnr4Li9rNWBueXc8b/IcehlJAasMTfXtsZbD4XjZfpwajzZea19yOZwfGsKS3OkZwwasa2GiKRRNESe3xS5/tx4V5zM+P82X7u0WUKb55UZ93WcM2y//mbGLeUrkwO1UMBkP2AHY4qezqoHZGbntI1uy6Z+M/tGk/3jm16Tt272fsjV/uzyMpT1pft3u87W+yS+HEDO80bR22nXqpWhm5PjsFnnmyGj6cLev5P41miFmPmwbGlVgh6OVTIueriuN2sj/12e5Wi02AikhERkrl8YwnE2EOJB0Gfk/zpDHgnr/BE+EnpM2KiIR6TC+SAOitC7Vc0IT4OV/PQ508T0WQFd7luYhcWE0qiT0lYlEbtGr6r1BpZvbO3jXejxx1/36SFDYpySN9pQs8movNVOGsbwzU/04IMHLUNDWLegiR18c4f2CrTdJ/L55DVyPyK9/r1RVPhQedTDE4qKQpfBruMS2UjcX9W95fcEKkPqX4A0Z08b+Itsd9JbFT5yVhWixZ9LMOwHRpja6pDSg4zvmc9oRM9mPjNv+N1VM4XmM6VG+OMz81YDTY29P9kwY/d4FD4VzGBgEPnKXHTzqQTbIjX8ZJPUtg7GI1HBeOdkFCOjZ4cANeoupBcr3jJpGdRRpgqjJ5pRQWnzHDNPC3uY7JLAG7499bE7WEdjjnHD4wgRc8DPdqnt9LS7ENnhqQph33r+sUc4TngeTxa2RAqR0i1EuP3STbODU4UySMEJjRUGXQPVLWMLki1O7sYQ67IP9ccNSVFbRAceH06sxv39uPrTHpLRPpsvEegHWwckBcEf0ZJ3JEEYB8Oew4a0zEQw5r30yr9Ka9MH5gsiCL+nNHGNVv4jgMuqrIrLPI8KGp09bmX/3gN8J9bie7B9fseFmauQWyHpfoNK0jD3y5g0Qu+rkS8IM2t2jFyq2d0lvGWv2/4hO5y5xJY3kZjhrVrxn3ezUPopKAcFm91Yz58OFPY8/qc2t78OdnW95wiR/Y4AFz2VCX47T6yOGnryxyLgHZ1/FLaLq6r/UZ69KBZtTvQ8Y9/NAtzj+zsLLvFsI4HKBv2ezG/xJQjTZuxvXWMJNondEC6xntQfIx5DcMROV9T/vyWl6/RDhbt00mytLEjKx+C2C/ZMCpCnR5OJgRv6UwLFMZnLkJnJeqFHbRM8FmEofxKg8KyYPpvDALZWftRlfeMakHqZ7cqQq1vmdpXRdzoFF0CLTAdCaZ1O0UCCPkYJnZx0NWaxBLrw3v3n2q+GMssTF2HfyPrwiORCE+Cecf6aDf9E0jb3BVYvskrHs2xHFIOjt8vKaJ1yoLwyt+GSd5qA79B5yU+BWYAFYAmhkSWrri3VjBPCOO36BUOFv8gYvR+O/wn/TJyXGXHqkdPGfzyexlX3xdcfN1YL8jkxreCRvLgS84LELmMfMxWFsZfpS3Yiv5YkS3JXNYXmwuESekvn+BpcAJ8sndlwOzBWqUWP/+Y3GeDkslStvNyYYyghsdHLn9ayGAinllphO1hUwxJyqf2JZltn1VlHhklUj4c9nQwyegRcQBirqJk/cSyBrNmO0p0QLSz5kcx4E+x0WW7R5lsk022oKn7GZ3ACohzQTpluDA0RhLqCdFirF84jDu0L5mCuR6nTj0gzmy4/iIQICcVeFWHbe+sPWJ+m+mJVomKprrY4cwmVzGqc0r2DOWepOjxfvyFzrNYmqB5y615T3hAyHMYCAvTPriwTymQib8Q+kYIor05+whUlClpYK5XoogD+ydR/nUWp7ALmfvMv6I5wwuxR7mMkmdnstaI+f2prrM8mU284dmoC2j3qZl63r6BPgc4C0HFEiMzISV5+Gfg5/0+td3kNJnVDZzONNPjl7ymO1C38oU2lw/IhioRHedLjxlpW/wgIcf3S/QrBKlvroVCSBvZaFFpsrPUauoxEkUJ0b3wibaqUYUVdtcp7s+l3KCFJTdn9upZs99kHY6jN7tIJxZKCHr4XZ5vcYeOpT+xMSoAYYyb+BTOwwofrbSZKbilzGQuRhMKlxSNgp6PssvoF8y94Hw0Vgen4SuCiJ6L1Bq9HsGa2QvW0LUCgsRyRMDsfKJ/hmpzsItXtRkypkLX/2KfVng+CVLsKK9uoWAXfQ2YmLXuE57u7q/b2lc2pdn9Je6J3BObGH52fUMl2lABwOeNkoHEG3WkbZDXidjpPdPwHyQivsnxRkzMUlVZodjJ2vYwlg20n/uDV+C7kZt/VdArSGFYhCejZAIkZaDT3IwhrnqsAcxjfTNv4Au+K6vIGIyMoh/AVUTyGtjTI+0tEpd3WjXCS7jtMmzDOBxwsqoEXXLDePCvp9ELSx/Cut4kyN6Ju1+JytJb4tIwsMfGhAScoJTNtnBZ4nZUK1pfPJL5MbgSyfbM3PJ3jyg57pfywigonMzTXs+cfW8TCzlT5Hx0fcmyNm6WxkNwu/VnQ822uKQ8LSemOICWqT4MO3DuRHDZ052nAGH9sGACtDhNqnFNBqrIp7Jdf57vxMM0Hvp9icnUeeYfLYXwODVvk+HWMsROFNTBNoIq/EV0hL2Aqg7+pBpYtjFGscZ295JcW20kUKc7z9B9k289OXs8OKGvdjoZxsFM0BoJPVPWJWmyoD3aLohZHsXvHjnp8bwxmTAuchYhSXpKXOQxxRTCXwIuEf3XRkkNRVt9IfEbH3Pb9fDYONneMC7o6//mLd+Mw1bUjEQllvGZHmbHWgaCtoyTQw7vK+Cm/tYWrBhmTiDWA3lnK74+bkFH2XFs5CkJh9gaH/0J6JUEEsivwhJpmGrMcISvVImmGWO81ozWxcL7eErKOfCDZEvPRS8ncRRkDB2VVDolGsBvLY20HUn38FSVfN9wt2p41AEaERjsaFSAOoWX1nVr0o+v95BDKJppzZfX4YAEwfRWRy5xMfjQlm3ARFrEeh3bP2U6Uld8Wb7K5tfaMNrvx5rZrbL3cPfv+q6v5K+AI7ShTa7l723i4SN0uJTGfdNh7XoTU++wS8ImTAXjzK4B3/XXsosI2XuJGcu8Dm+VR8l5nXRgE/Ougjpv5NockvDHPYAJdLaf9zmw6EN8gvABG/mtoBTi+ey9SuFLG4lOkesrQ34Tlzzy51KmQ5Hpm9IU+XZZNmMMd65oGGFCDn8+MB5x2E0K4jaCxyhe8mCWg1hxWwyIp6f9XtfO686eVLwoL+eN0E2/W1lSgK4LLoGjipKBtg9NLYGI0am8i22edPpIWWBEFA4uJPtHutTfdF1PxPQWKKX/hKKxWr6WClM7whoa3/CyFAmnhVaJaqZSdQ0k/pE3Sykic+RIWFwULh8xeUNVvjbOuIdYPkuQv5DhSaSAm+trq6SVo1gToDHmCYmbkvCjVHw47bcw54T/Zngr83PFFuCsB9h7G7fOCIIIMfdWjS93tkvqZGTObgrfueQItZGsoqXMIo+aLxmnsTYSLmtOCMxxOKPkyv0HRdC0Rx/tebzOOPY2TlCPfrxTK/X39rgtF9RICJ6134nJoDwRRQ+q4amyntaUV9USjN4G8vq5bBIOSuHUl+/4Sn+gV7xnyD89X8wSOLeuLdGs8SrxaSN1ul6ZcJnwDdnHEhEH2W4BLelEvcknEKfU272q8Uumqn+mtO75/paY1Ww64fIZnJGZ0n+a3zWfpKYoLl5Jhu1RVHY6/QGSBtpz+5XdOU9G0Q05jIo/xGQWphIO9kOBYpN3eCzAkSK82A4Up3RsWuhjgv6FZ8rolmbercIBStFMBLgW3SNDCAbULc0OA4KMfIjQygKgz60OjbBu/9dTfmrK/SuFY2JpdLdZqPUIW6kr0s266O422Xe4P9RrmDyehgqhPe330XfQ9Yi2wrEmGzNDZB+MJ3CKXNxnPGHsuSRTtJrj3hKRiLrOzAqt+xlez0IC8OQJxWQ4Vo5dTG2Z/pInwgg1DHPIndALUhqZagOWYO6RxSOSMMhJ8ZFg4eiCORSrnlIXAufjnJCllzm2BS/BjqS6I6pYgwT52YkqMe2sTuDEZ4Qw+oFtljAxUsRmzvKg6B1CXeAQxsWkGTVZHNF/cloB/3VAVZGWfCJOlCvmoPEudWs3JLf9iXJU268mZNFN6/uV0vobOcofaCxtVJ9vJn7s16NqVqBCG6MogJnqoPtBiLRYzdHcbroDsxp+b/9ihr1K3mIKmas5NNcfYQlSu50YnGZqC1jmCp/8ZdW8kzYjKZ15wJXUlrb2Io7VkwlpRhgMjJ0XVY0pahzgml1QVwNapFM5ABAPcZooWbVJA8maD58z/QWDPFwKkM826OqmTiLpjym1KVusKMsSsQfSmBHxfvPqBln1xGdF6nDWw1R2Vy9F1HGAAbzmH+bHZXksdqYKotIuuMCe9fJdwvDgLRtH6dsdZ3kD0KyuWkvXET4381eTNrVbCQX6XhiujIkBoVd0yNJGqoVC1GXvGbqSRjHeFNQVtMKlBn7LBTLZo0GPbxyK2xE1EjQSmqtuwpO1xj1llx/+AvwvcaZkvbtJxF49cTgGe69DXhdvADIzSNrKLHeacFEKLGndvK0I37UM1rKZRk8M1TlcoCEfpzG7AFXY2iHzzACser7nia84e8t7CC+ffK0YsID5BglS5f7CVHjd8+GO10xuJEDH1YXtRbSd4bTxNZ4+BKRtzdUHKloHWow463zyD4vfgWhvZTqcD73mjIYgRfdo/SFEos9nyEYednigjkZlR/02VR1pgZP/7oeIDAYgeZahOdUsXQ6CT6UYRaDMLwAPzo0EAsXeWFSvDjs/av/lplnwuOKdVMjWmGbMDuHrZqHCyv/f1ufhxtDgSZzIFsql9mNIP+3fPmtUPLoneoD6/J5GY/A1Eu4b6iefz0fT8ovlP9RcUPjI36+CroANyGjylKGhtmK44RGIizh6mbWikV+6+ptds/asU1AqBE+f2tFZfNjFxbL2m90P9F69uwC8XVyKsh+XA/TAxLabr/AYDIsnuukgsNWxAvcVEyXKZFXski0+6/yJaONpiv5DVtBIOYhcSNqHuy119zRRxU60a0kOgcGKcjGGOVIa3fg+DrTY9+n2dMNcycl77UBmU+ui2KMtYxXbqvqS3Zo/jDGa9X2qj1mBGXiQfzaswcgbDHb8/5sU5IgHx+WreGaY8eWZmX/zL7d83PjhYUA1FP6yAZ8dJiWP0tfFeLSoroEUCZkUWZwnBftlu5PG6V1Zdx0fu5Cy4lm2t0c07pJpTLZ8ml197WqrTBPHbriCD1eX9I9xQdZZcZO2OfNe96JtBXRhNoPBLuziAF+LQeNphjbbCIvZyrEUCGpDF0Ko3hl5JurnuMJcDFJiiwa0SkmJtvJYu9fGkI+yftR4CeEvX/d2CQfxiKPjUF7TE/S8h7a04Jal4cw/Dp+LuC86mmLYbGEtESTHj+tbkh2PxGLl0wHtZs2F2xdnWkBlw9eZutTQpB0d5Oed/xry0m4jdevd9ahWiqc28r39n7zl7k3sVvG+3Fz6pjmIH6MB4vS8FZ/P/nhV8G2qk8E74/v2eeMnJPYOV+c92gs5u/2XiywLWJZAiaxtiMB8Dz7PzTaTor216VEDngaMOveNcyqfIyk1BjAvtopOD9skqOQMkjKW5UdluPB4TxzuDpgsR2w5Blgw0l6whahvMT1Q5lmiWpwXt5BEVdQm/oeLnTRZ0ptslow8d55DKP3cjpZN09+brRMvHyn1fHJn2cby4us5p6fGv+LmNcejy2opokxNSQApXB50lDQVYqYHpSaqp+NOkxkcB1xQ4HOspeJNa91kNgPApbEpCiz3wF1//iVHPeiXZhi+v2lTUWMP6yCMn3vNFlIPZxzJwBfKACvz0QSDpqE9peBJIccftehvghAN0jj4EVgOjj71/lnafsDRL1NFRmf3nB2+cQogWI81ttbKD+qrT2YjbkQeiY6qJv/SOinfzbrXNZ+Eha4QtvPo7KdjANbGqcrO+4NRD5JC7VVQYfYrlnx2pAvJZRo+CuCesWWPm/Xzyvd9rXBOYZl9+1QG0Ru2qDN5XvbyTtAnQShqgB/BCFVN5bmG9MkqjHxlUnocY+k6M0VQfIRoPu3jilX4aXrAyZ+DNJIGVaNNam/P942sc0+KTKqbonrEV0zpC52SboX09W1zHNBOUUceIib4Mp/XRGO5nxvqR5bQCcmWU+5HX0uKY/aSxRp7VcH/w2kwZF7LwRfVPNj10EoDY3MZ41pA2Eq6TkPomCRJyK3wJ3CW8+U6hRzx0w9XnjK774qy1Q5mms03Nn91HPQMhsMytbAh7P5b5jU0NxWg0BrIx836AVIxeuq0PMZYwslsiWDfheV0YsvlCNFwYasVmzWs9t90qX12ahh0yNUFhK8dd7tCUbpnhJxQvsVtJvmHoxhLUr0gOXL4KclAYCpTZPSjPXxyUROygjma9X4XeN5UmOPmzso9hWhlgI71enlWFjJoOlElFyLql1NXsllWMIjkSsNxlhFox7arduKGQLjkns/+K0z/tj8s++OuJaQHmkwziiB8QNAesIJKZ1tq+p8IGsuGCmlm9gqp5MQU0rHNswSn3Q3Y4XgMXjFZPX9f+eaCqFmwq+9bxW68wJukLgK/Kxd7oKyAQuDOvbtd4vfqQ6rK49kMD2Z/OMCyYxVJj5nJJX9q8AVBKbMNjfFt/WR1f/bhsOe7uw2mXsTFIjbFjWMRi5Dw6Krqhoh7Ot6+IVvqVqqWCxlxjSCa7bpUZUFSXMTnMDxVdEMuYwDcQD4gEY0+CGGRdRRt7UVkgGe2g5HhzHkTtjNJmgG7qUNFKkAFTCIW74LEpYi3SW4KTTkLuswjHUceUhveVtVO9HO+s/tGZn9+Jvv3iSZolgP41LdhRqquTWUXaY5r5fegUssTF8xXfbsbQjP9ZOT5rpHtEZt6uS6lfFztVbfc3uE0UE0j0EMA472SxxQavzMZIzbABpt4vc8F9kJzPAQ8gNABgUZUrDgETm3meVHEUmXXJ0RfNUPcKA0qOXMu7HyrUFYJOB1LmQSxMZAXnwWh0B4ciwOc7V1V2Z6VcHwI5oraFSD8XS4JEw/V1FnH0C1dC4r6TsFlbBYpB1kSEsmNMEb0kiPmFlbCu6YIaxO9AV0nYPpR6yz7Hf7IyMF1j8PG+MuzFtj1mc5MH8AGWgaS5jPpJWP9oZ9WI+Os1aRkbP23WFAp9z/CVotXoSEokBx02v1XmgMRKr6nxeCjEAj8OH6gLJpxqqjkkzhFdc8+BjqRlFLfbcXsuEEp/KbWmNznSyNmKfgPY7A6AaBaYL40AtFhpRo2Uj72OeGueqeN1kLx8lxTrvP6SHvP35PioOe8MSDKcbJtfcA+TaF3txxVrYUEc1SVaZws/W9ISgpSnRRI9C22krpa40bUCn96J8GIcZgwyLPsi9aldWnF9UlJlFGvnny8dY5AnYaMsVw98cUgOy08HBtQVzEwZv3llsqgpHhbp8Hb3O/Azgz/BIzcRxJLNt+ad1hOE5rzzYxNQScClPCpUaHykejRtYMtuCMxuQErY1Cc0A0m1WlLoQ5OdMqSWWVbcl/K6586srsV770sUaHrTpHu710Imi9MWFa6rfuprikfWXBEaWc2OwQNG/anIH4BT1D/Z2vvEh7fG+oT+ybf24ph5OZobVPJxw8enY0XTPz/bbdE6yHIBbiEEwELQ+ha1BDj9AF7J/t/IhASp8z4iF0ieBHlzwC9waJ2rd1m+wCQePDfmk0VNsKlr7GDqzCfrM01tU/EjmxSpVwZ8/fce1Sa3BM40mxO3hMstpbvfPSPr/xb/Zyq7BRJ+Sm922ma4XTzNR9xs4lqp0etAolmjtwKTENpNz2XQ79XpvBaiUVWCnXu2/EtUNQkgEPRPjoWSpYSym3AHRX/frCiOEbcC/mN/UBWQtAg6XRV9B/UlQ3qi5idtT1o/2/T9T9kcOK9xMH4do1J6AiKO50518gw/S4SIRG66DC2QdQ1WCNZaaZzSRWMzxjzv2v7TNS5veeqVhJ2VNv/39cZXUGv4iIBTB6VJJnQCvwJj56NUXgFC11YMOPwIn4wnEe1/NBC4Yc1+wV8rfdkBOFs7ZbkA8HgHl643EV+BROFTF+MFV8h7vsGO6f7pplfaytyw0r9ssbd7osMVOjCyte4R16g8zKed375C31E6jeLvYhvGKDvCIJ2HM36Wxp5Die1IyDnVZwXZtyjHbM5gS40flX6q2QvGUAmC9DBckk8AWWUk+NlIFGmzGgSRehlJUQ3Z7hM3OFmfmaUMM+Hz7Id7VtHETbf0A5d3sQJ0WOjhi+bII/LA8I0iVofErDvuNgJXBN4zUZpyTsCF2/utJAOYEIYSTHCCQSn+wgfJLkp9rSwh8pvn2wwDzMM5deBCLDhdILT4u7hgdYCVEjaNWwX+i5IO16V5WojoLJCRjdRy63OpbhZ+pX6DLEPDCchCg0m2vg==
📌 Aquest document pot quedar desactualitzat després d’imprimir-lo. Pots consultar la versió més recent
a la pàgina web.
🌿 Abans d’imprimir aquest document, considera si és realment necessari. Redueix el consum de paper i ajuda a protegir el nostre entorn.
|
|
|
|
|
Examen 1a avaluacióJoan Puigcerver Ibáñez 📌 Aquest document pot quedar desactualitzat després d’imprimir-lo. Pots consultar la versió més recent
a la pàgina web.
🌿 Abans d’imprimir aquest document, considera si és realment necessari. Redueix el consum de paper i ajuda a protegir el nostre entorn.
|